Conditional Stability Estimates for Ill-Posed PDE Problems by Using Interpolation
نویسندگان
چکیده
منابع مشابه
Conditional Stability Estimates for Ill-posed Pde Problems by Using Interpolation
The focus of this paper is on conditional stability estimates for illposed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical backgr...
متن کاملInterpretations and estimates for ill-posed problems
Following a discussion of the relation of these problems to applications , intended to clarify the considerations which must be handled in order to obtain genuinely useful results, we consider techniques for determining optimal approximationss and consequent optimal error bounds for certain classes of ill-posed problems with appropriate a priori information.
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملConditional stability for ill - posed elliptic Cauchy problems : the case of Lipschitz domains ( part II )
This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace’s equation in domains with Lipschitz boundary. It completes the results obtained in [4] for domains of class C. This estimate is established by using an interior Carleman estimate and a technique based on a sequence of balls which approach the boundary. This technique is inspired f...
متن کاملStructural Stability for Ill-Posed Problems in Banach Space
We prove Hölder-continuous dependence results for the difference between solutions of certain ill-posed and approximate well-posed problems in both Hilbert and Banach spaces. We use operator-theoretic methods, including C-semigroups, to treat the abstract Cauchy problem du dt = Au, u(0) = χ, 0 ≤ t < T, where the operator −A is the infinitesimal generator of a holomorphic semigroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Functional Analysis and Optimization
سال: 2013
ISSN: 0163-0563,1532-2467
DOI: 10.1080/01630563.2013.819515